Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6843
Title: Hyperspectral Target Detection - An Experimental Study
Authors: Günyel, Bertan
Cinbiş, Ramazan Gökberk
Türe, Sedat
Gürbüz, Ali Cafer
Keywords: hyperspectral target detection
spectral signature
machine learning
Issue Date: 2015
Publisher: IEEE
Source: 23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEY
Series/Report no.: Signal Processing and Communications Applications Conference
Abstract: In hyperspectral imaging, the measured spectra are affected by the materials and objects that reside within or in close vicinity of the pixel which is being imaged. The detection of a material or object of interest in an imaged region is a common problem in various application areas. In this work, an experimental study is performed for target detection in hyperspectral images, supported by a performance comparison.
URI: https://hdl.handle.net/20.500.11851/6843
ISBN: 978-1-4673-7386-9
ISSN: 2165-0608
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

Page view(s)

2
checked on Dec 26, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.