Please use this identifier to cite or link to this item:
Title: Mathematical analysis of planar solid oxide fuel cells [Article]
Authors: Pramuanjaroenkij, Anchasa
Kakaç, Sadık
Zhou, Xiang Yang
Keywords: fuel cells
solid oxide fuel cells (SOFCs)
fuel cell modeling
Issue Date: 2008
Publisher: Pergamon-Elsevier Science Ltd
Abstract: In this work, a mathematical transport model for a planar solid oxide fuel cell has been developed and the analysis has been performed by the use of an in-house program which can help developers to understand the effects of various parameters on the performance of the fuel cell. In the model, electrochemical kinetics, gas dynamics and transport of energy and species are coupled. The model predicts polarization curve, velocity and temperature fields, species concentration and current distribution in the cell depending on fuel cell temperatures and electrolyte materials used in the components, such as yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (CGO). SOFC operating temperatures at 500, 600, 800, and 1000 degrees C are considered and the modified Nernst equation is used to obtain a reversible cell voltage. It is shown that the anode-supported solid oxide fuel cells with YSZ electrolyte can be used to obtain a high power density in the higher current density range than the YSZ electrolyte-supported solid oxide fuel cells when they are operated at 800 degrees C. Performance comparisons between two electrolyte materials, YSZ and CGO are made. The YSZ-electrolyte solid oxide fuel cell in this work shows higher power density than the CGO-electrolyte solid oxide fuel cell at the higher temperatures than 750 degrees C. (c) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
ISSN: 0360-3199
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 23, 2022


checked on Feb 4, 2023

Page view(s)

checked on Feb 6, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.