Please use this identifier to cite or link to this item:
Title: Modified annular photonic crystals with enhanced dispersion relations: polarization insensitive self-collimation and nanophotonic wire waveguide designs
Authors: Turduev, Mirbek
Giden, İbrahim Halil
Kurt, H.
Keywords: [No Keywords]
Issue Date: 2012
Publisher: Optical Soc Amer
Abstract: A novel (to our best knowledge) type of photonic crystal (PC) structure called modified annular PC (MAPC) that is composed of dielectric rods with off-centered air holes is thoroughly studied. The plane wave expansion method is applied for spectral analysis. A complete photonic bandgap region with a considerable value of gap width Delta omega/omega = 7.06% is achieved by optimizing the structural parameters of the proposed periodic medium. By introducing geometrical asymmetry to the primitive cell of PC, we engineer the dispersion properties of the proposed photonic structure such that conventional equifrequency contours for the second band can be transformed into tilted rectangular shapes. This feature enables us to demonstrate the polarization insensitive tilted self-collimation effect. A hybrid structure composed of dielectric nanowire and MAPCs is offered to obtain a high degree of polarization independent guiding of light. The two-dimensional finite-difference time-domain method is carried out to verify the light guiding efficiencies. Polarization insensitive optical functionalities achieved by MAPC structure can be deployed in integrated optical circuits. (C) 2012 Optical Society of America
ISSN: 0740-3224
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 23, 2022


checked on Sep 24, 2022

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.