Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7520
Title: Statistical Korovkin-Type Theory For Matrix-Valued Functions
Authors: Duman, Oktay
Erkuş, Duman Esra
Keywords: A-statistical convergence
matrix-valued functions
linear positive operators
Korovkin theorem
modulus of continuity
A-statistical rates of approximation
Issue Date: 2011
Publisher: Akademiai Kiado Zrt
Abstract: In this paper, using the notion of A-statistical convergence from the summability theory, we obtain a Korovkin-type theorem for the approximation by means of matrix-valued linear positive operators. We show that our theorem is more applicable than the result introduced by S. Serra-Capizzano [A Korovkin based approximation of multilevel Toeplitz matrices (with rectangular unstructured blocks) via multilevel trigonometric matrix spaces, SIAM J. Numer. Anal., 36 (1999), 1831-1857]. Furthermore, we compute the A-statistical rates of out approximation.
URI: https://doi.org/10.1556/SScMath.2011.1179
https://hdl.handle.net/20.500.11851/7520
ISSN: 0081-6906
1588-2896
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

SCOPUSTM   
Citations

1
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

2
checked on Sep 24, 2022

Page view(s)

12
checked on Dec 26, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.