Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7556
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaynak, Ünver-
dc.date.accessioned2021-09-11T15:57:49Z-
dc.date.available2021-09-11T15:57:49Z-
dc.date.issued2012en_US
dc.identifier.issn0954-4100-
dc.identifier.issn2041-3025-
dc.identifier.urihttps://doi.org/10.1177/0954410011416187-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7556-
dc.description.abstractThe effect of compressibility on supersonic boundary layer transition is simulated by modifying a standard gamma-Re-theta t correlation-based transition model under two-dimensional (2D) approximation. First, the gamma-Re-theta t model's empirical correlations derived for low Mach numbers are validated against some well-known subsonic flat plate experiments. Second, the same empirical correlations are tested against a direct numerical simulation (DNS) dataset closely approximating a supersonic flat plate experiment at M = 2.25. Finally, the present empirical correlations are extended for supersonic speeds using a known compressibility correlation. For this, the free stream turbulence level is assumed to remain constant and the free stream velocity is increased up to a supersonic speed of Mach 2.7 using adiabatic wall conditions. Numerical results show that the modified gamma-Re-theta t transition model is capable of predicting the downstream movement of the transition onset location in good agreement with the linear theory, experiments, and DNS data up to Mach 2.25. The length of the transition region is observed to grow with higher Mach numbers, and destabilizing effect of compressibility after Mach 2.0 is also predicted, in a limited sense, under the 2D approximation.en_US
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.ispartofProceedings of The Institution of Mechanical Engineers Part G-Journal of Aerospace Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcorrelation-based transition modellingen_US
dc.subjecttransition onset locationen_US
dc.subjecttransition lengthen_US
dc.subjecttransition point momentum thicknessen_US
dc.subjectcompressibility correlationen_US
dc.subjectlinear stability theoryen_US
dc.subjectReynolds-averaged Navier-Stokesen_US
dc.subjectdirect/large eddy simulationen_US
dc.subjectshear stress transporten_US
dc.subjectk-omega SST transition/turbulence modelen_US
dc.titleSupersonic boundary-layer transition prediction under the effect of compressibility using a correlation-based modelen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümütr_TR
dc.identifier.volume226en_US
dc.identifier.issueG7en_US
dc.identifier.startpage722en_US
dc.identifier.endpage739en_US
dc.identifier.wosWOS:000305567900001en_US
dc.institutionauthorKaynak, Ünver-
dc.identifier.doi10.1177/0954410011416187-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

4
checked on Apr 20, 2024

Page view(s)

24
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.