Please use this identifier to cite or link to this item:
Title: Systematic investigation of the effects of unidirectional links on the lifetime of wireless sensor networks
Authors: Özyer, Sibel T.
Tavlı, Bülent
Dursun, Kayhan
Koyuncu, Murat
Keywords: Wireless sensor networks
Unidirectional links
Linear programming
Energy efficiency
Issue Date: 2013
Publisher: Elsevier
Abstract: Link unidirectionality is a commonly encountered phenomenon in wireless sensor networks (WSNs), which is a natural result of various properties of wireless transceivers as well as the environment. Transmission power heterogeneity and random irregularities are important factors that create unidirectional links. Majority of the internode data transfer mechanisms are designed to work on bidirectional links (i.e., due to the lack of a direct reverse path, handshaking cannot be performed between a transmitter and receiver) which render the use of unidirectional links infeasible. Yet, there are some data transfer mechanisms designed specifically to operate on unidirectional links which employ distributed handshaking mechanisms (i.e., instead of using a direct reverse path, a multi-hop reverse path is used for the handshake). In this study, we investigate the impact of both transmission power heterogeneity and random irregularities on the lifetime of WSNs through a novel linear programming (LP) framework both for networks that utilize only bidirectional links and for those that can use bidirectional links as well as unidirectional links. (C) 2013 Elsevier B.V. All rights reserved.
ISSN: 0920-5489
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 23, 2022


checked on Sep 24, 2022

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.