Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8114
Title: Search for dark matter produced in association with a single top quark in root s=13 TeV pp collisions with the ATLAS detector
Authors: Aad, G.
Abbott, B.
Abbott, D. C.
Abud, A. Abed
Abeling, K.
Abhayasinghe, D. K.
Sultansoy, Saleh
The ATLAS Collaboration
Keywords: Measuring Masses
Plus Plus
Lhc
Issue Date: 2021
Publisher: Springer
Abstract: This paper presents a search for dark matter in the context of a two-Higgs-doublet model together with an additional pseudoscalar mediator, a, which decays into the dark-matter particles. Processes where the pseudoscalar mediator is produced in association with a single top quark in the 2HDM+a model are explored for the first time at the LHC. Several final states which include either one or two charged leptons (electrons or muons) and a significant amount of missing transverse momentum are considered. The analysis is based on proton-proton collision data collected with the ATLAS experiment at root s = 13 TeV during LHC Run 2 (2015-2018), corresponding to an integrated luminosity of 139 fb(-1). No significant excess above the Standard Model predictions is found. The results are expressed as 95% confidence-level limits on the parameters of the signal models considered.
URI: https://doi.org/10.1140/epjc/s10052-021-09566-y
https://hdl.handle.net/20.500.11851/8114
ISSN: 1434-6044
1434-6052
Appears in Collections:Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

SCOPUSTM   
Citations

1
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

4
checked on Sep 24, 2022

Page view(s)

14
checked on Feb 6, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.