Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8275
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKakıllıoğlu, Emre Anıl-
dc.contributor.authorAktaş, Melike Yıldız-
dc.contributor.authorFesicioğlu-Ünver, Nilgun-
dc.date.accessioned2022-01-15T13:02:24Z-
dc.date.available2022-01-15T13:02:24Z-
dc.date.issued2022-
dc.identifier.issn0360-5442-
dc.identifier.issn1873-6785-
dc.identifier.urihttps://doi.org/10.1016/j.energy.2021.122276-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8275-
dc.description.abstractAlong with the increasing number of electric vehicles (EVs) on the roads, the demand for public fast charging stations is growing. Long charging times for EVs may lead to congestion in charging stations, queues, and increased waiting times. Different vehicle owners have different sensitivities to waiting time and price. User prioritization is an effective solution for satisfying users with different requests. In this study, we develop a self-controlling resource management model for EV fast-charging stations that provide prioritized service. The model aims to control the delay times of express and normal vehicle classes such that the ratio of their average delay times tracks a target relative delay rate in real time. Each station can determine and change its target relative delay rate according to its policy. The model manages the allocation of resources to user classes in real time through a control mechanism to track the target. The control mechanism uses a simulation model to predict the outcomes of its actions. Numerical studies demonstrate that the model successfully achieves the relative delay target in both steady state and real time under different conditions. The model is applicable to most systems with a dynamically varying workload and a priority-based service goal. (c) 2021 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofEnergyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSelf-controlen_US
dc.subjectResource managementen_US
dc.subjectElectric vehicleen_US
dc.subjectFast charging stationen_US
dc.subjectLevel 3 stationen_US
dc.subjectPriority based serviceen_US
dc.subjectRouting Problemen_US
dc.subjectTime Windowsen_US
dc.subjectGuaranteesen_US
dc.subjectSelectionen_US
dc.subjectLocationen_US
dc.subjectSystemsen_US
dc.subjectNetworken_US
dc.subjectDelayen_US
dc.subjectTaxien_US
dc.titleSelf-controlling resource management model for electric vehicle fast charging stations with priority serviceen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume239en_US
dc.authoridFescioglu Unver, Nilgun / 0000-0002-5332-8670-
dc.identifier.wosWOS:000711163200007en_US
dc.identifier.scopus2-s2.0-85116904541en_US
dc.institutionauthorFescioğlu Ünver, Nilgün-
dc.identifier.doi10.1016/j.energy.2021.122276-
dc.authorscopusid57195632493-
dc.authorscopusid57224221538-
dc.authorscopusid9639266600-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

1
checked on Mar 25, 2023

WEB OF SCIENCETM
Citations

4
checked on Sep 24, 2022

Page view(s)

64
checked on Mar 27, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.