Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8628
Title: Diagnostic classification of schizophrenia and bipolar disorder by using dynamic functional connectivity: An fNIRS study
Authors: Eken, Aykut
Akaslan, Damla Sayar
Baskak, Bora
Munir, Kerim
Keywords: Schizophrenia
Bipolar disorder
fNIRS
Machine learning
Dynamic Functional Connectivity
Mental State Judgement
Default Mode Network
Verbal-Fluency Task
Social Cognition
Prefrontal Activity
Eyes Test
Abnormalities
Metaanalysis
Lobe
Mind
Recognition
Issue Date: 2022
Publisher: Elsevier
Source: Eken, A., Akaslan, D. S., Baskak, B., & Münir, K. (2022). Diagnostic classification of schizophrenia and bipolar disorder by using dynamic functional connectivity: An fNIRS study. Journal of Neuroscience Methods, 376, 109596.
Abstract: [Abstract Not Available]
URI: https://doi.org/10.1016/j.jneumeth.2022.109596
https://hdl.handle.net/20.500.11851/8628
ISSN: 0165-0270
1872-678X
Appears in Collections:Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

SCOPUSTM   
Citations

1
checked on Sep 23, 2022

Page view(s)

26
checked on Dec 26, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.