Please use this identifier to cite or link to this item:
Title: Frictional receding contact problem for a graded bilayer system indented by a rigid punch
Authors: Yılmaz, K. B.
Çömez, I.
Yıldırım, B.
Güler, Mehmet Ali
El-Borgi, Sami
Keywords: Singular integral equations
Sliding contact
Finite Element Method
Issue Date: 3-Apr-2018
Publisher: Elsevier Ltd
Source: Yilmaz, K. B., Comez, I., Yildirim, B., Güler, M. A., & El-Borgi, S. (2018). Frictional receding contact problem for a graded bilayer system indented by a rigid punch. International Journal of Mechanical Sciences, 141, 127-142.
Abstract: The frictional receding contact problem for two graded layers pressed by a rigid punch is considered in this paper. The punch is subjected to both normal and tangential loads thereby resulting in frictional contact with the upper layer. It is also assumed that the contact between the layers is frictional and the lower layer is fixed. It is further assumed that the gradation in the layers follows an exponential variation through the thickness with different profiles while Poissons ratios are taken as constants. Using standard Fourier transform, the contact problem is converted to a system of two singular integral equations in which the contact pressures and the contact widths are the unknowns. The integral equations are then solved numerically using Gauss–Jacobi integration formula. The Finite Element Method was additionally employed and both exponential and power law material gradation is used to solve the investigated problem and the obtained numerical and analytical results are in good agreement. The primary intention of this paper is to investigate the effect of material gradation, friction coefficients, layers thicknesses and material property mismatch at the interface between the layers on the contact pressures and contact widths. © 2018 Elsevier Ltd
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 23, 2022


checked on Feb 4, 2023

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.