Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9056
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSalman, Huseyin Enes-
dc.contributor.authorJurisch-Yaksi, Nathalie-
dc.contributor.authorYalcin, Huseyin Cagatay-
dc.date.accessioned2022-11-30T19:27:13Z-
dc.date.available2022-11-30T19:27:13Z-
dc.date.issued2022-
dc.identifier.issn2306-5354-
dc.identifier.urihttps://doi.org/10.3390/bioengineering9090421-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9056-
dc.description.abstractMotile cilia are hair-like microscopic structures which generate directional flow to provide fluid transport in various biological processes. Ciliary beating is one of the sources of cerebrospinal flow (CSF) in brain ventricles. In this study, we investigated how the tilt angle, quantity, and phase relationship of cilia affect CSF flow patterns in the brain ventricles of zebrafish embryos. For this purpose, two-dimensional computational fluid dynamics (CFD) simulations are performed to determine the flow fields generated by the motile cilia. The cilia are modeled as thin membranes with prescribed motions. The cilia motions were obtained from a two-day post-fertilization zebrafish embryo previously imaged via light sheet fluorescence microscopy. We observed that the cilium angle significantly alters the generated flow velocity and mass flow rates. As the cilium angle gets closer to the wall, higher flow velocities are observed. Phase difference between two adjacent beating cilia also affects the flow field as the cilia with no phase difference produce significantly lower mass flow rates. In conclusion, our simulations revealed that the most efficient method for cilia-driven fluid transport relies on the alignment of multiple cilia beating with a phase difference, which is also observed in vivo in the developing zebrafish brain.en_US
dc.description.sponsorshipResearch Council of Norway [314189]; Qatar National Libraryen_US
dc.description.sponsorshipPart of this work was supported by a FRIPRO grant from the Research Council of Norway (N.J.-Y. grant number 314189). The publication of this article was funded by the Qatar National Library.en_US
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.ispartofBioengineering-Baselen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcomputational fluid dynamicsen_US
dc.subjectmotile ciliaen_US
dc.subjectcerebrospinal flowen_US
dc.subjectembryonic developmenten_US
dc.subjectzebrafishen_US
dc.subjectANSYSen_US
dc.subjectbrain ventriclesen_US
dc.titleComputational Modeling of Motile Cilia-Driven Cerebrospinal Flow in the Brain Ventricles of Zebrafish Embryoen_US
dc.typeArticleen_US
dc.identifier.volume9en_US
dc.identifier.issue9en_US
dc.authoridJurisch-Yaksi, Nathalie/0000-0002-8767-6120-
dc.identifier.wosWOS:000856205400001en_US
dc.identifier.scopus2-s2.0-85138635896en_US
dc.institutionauthorSalman, Hüseyin Enes-
dc.identifier.pmid36134967en_US
dc.identifier.doi10.3390/bioengineering9090421-
dc.authorwosidYalçın, Hüseyin/GWC-0247-2022-
dc.authorwosidJurisch-Yaksi, Nathalie/A-3219-2019-
dc.authorscopusid55567773400-
dc.authorscopusid36188408100-
dc.authorscopusid16306009400-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.ozel2022v3_Editen_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Jan 20, 2024

Page view(s)

30
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.