Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9078
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTekoglu, C.-
dc.contributor.authorKochan, B.-
dc.date.accessioned2022-11-30T19:27:43Z-
dc.date.available2022-11-30T19:27:43Z-
dc.date.issued2022-
dc.identifier.issn0749-6419-
dc.identifier.issn1879-2154-
dc.identifier.urihttps://doi.org/10.1016/j.ijplas.2022.103358-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9078-
dc.description.abstractThe available numerical methods for performing finite element unit cell calculations under stress states evolving in a predefined manner restrict the most general stress state to a single shear stress component superimposed on three normal stress components. The present study builds on and extends state of the art such that the behavior of a unit cell under the most complex stress states, comprising three shear and three normal stress components, can be explored. The proposed method is implemented in the commercial finite element software Abaqus. Three-dimensional cubic unit cells containing either a void or a particle at the center and subjected to various stress states showed that the developed method is accurate and computationally efficient. Furthermore, simulations using voided unit cells demonstrate that ductile failure is an anisotropic process, with anisotropy intensifying in the presence of shear loads. That is, void growth and strain localization leading to ductile fracture are influenced by the relative ratios of all shear stress components as well as the stress triaxiality and the Lode parameter.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofInternational Journal of Plasticityen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRepresentativevolumeelementen_US
dc.subjectUnitcellen_US
dc.subjectMicrostructuresen_US
dc.subjectHomogenizationen_US
dc.subjectFinite element methoden_US
dc.subjectCombined Tensionen_US
dc.subjectVoid Growthen_US
dc.subjectDuctile Fractureen_US
dc.subjectLode Parameteren_US
dc.subjectStrain Localizationen_US
dc.subjectRupture Mechanismsen_US
dc.subjectLoading Pathen_US
dc.subjectShearen_US
dc.subjectTriaxialityen_US
dc.subjectFailureen_US
dc.titleUnit cell calculations under fully characterized stress statesen_US
dc.typeArticleen_US
dc.identifier.volume156en_US
dc.authoridTekoglu, Cihan/0000-0001-7383-3909-
dc.authoridKOCHAN, BERKAY/0000-0002-2269-8281-
dc.identifier.wosWOS:000827520200004en_US
dc.identifier.scopus2-s2.0-85134754493en_US
dc.institutionauthorTekoglu, Cihan-
dc.identifier.doi10.1016/j.ijplas.2022.103358-
dc.authorscopusid35320237300-
dc.authorscopusid57815591700-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.ozel2022v3_Editen_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Apr 20, 2024

WEB OF SCIENCETM
Citations

9
checked on Jan 20, 2024

Page view(s)

30
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.