Periodicity Detection in Turkish Stock Market
No Thumbnail Available
Date
2018-07
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
This paper provides a periodicity detection sample of the Turkish Stock Market using data mining concepts and techniques. The extraction of periodic patterns from the time series databases is a captivating area in data mining such that it has impulse to forecast and predict the behavior of time series data in the future. Given data from on a multilevel space from different industries, we find repeating trends and frequent patterns using correlation analysis and fourier spectral evaluation. Using the projection of transformed time-series data of the feature space, we indicate long-term movements, cyclic moves, seasonal variations, and random moves. Finally, we will present a simple trend analysis for time-series forecasting the periodicity. © 2018 IEEE.
Bu makalede, veri madenciligi teknikleri kullanılarak Türk Borsası’nda işlem gören hisse senetlerinin periyodiklik analizi yapılmıştır. Zaman serisi verilerindeki periyodik örüntülerin incelenmesi ilgi gören bir veri madenciligi problemidir, ve gelecek tahmini yapmak için kullanılabilir. Farklı sektörlerden hisse senetlerinin incelendigi bu çalışmada, tekrar eden yönelimler ve sık karşılaşılan örüntüler, ilinti analizi ve Fourier Dönüşümü yöntemleriyle tespit edilmiştir. Zaman serisinin farklı boyutlara dönüştürülmesiyle elde edilen veri, uzun süreli hareketleri, dönemsel hareketleri, periyodik hareketleri ve rasgele hareketleri saptamamızı saglamıştır. Son olarak ise, periyodiklik bilgisi kullanılarak basit bir yönelim tahmini yapılmıştır.
Bu makalede, veri madenciligi teknikleri kullanılarak Türk Borsası’nda işlem gören hisse senetlerinin periyodiklik analizi yapılmıştır. Zaman serisi verilerindeki periyodik örüntülerin incelenmesi ilgi gören bir veri madenciligi problemidir, ve gelecek tahmini yapmak için kullanılabilir. Farklı sektörlerden hisse senetlerinin incelendigi bu çalışmada, tekrar eden yönelimler ve sık karşılaşılan örüntüler, ilinti analizi ve Fourier Dönüşümü yöntemleriyle tespit edilmiştir. Zaman serisinin farklı boyutlara dönüştürülmesiyle elde edilen veri, uzun süreli hareketleri, dönemsel hareketleri, periyodik hareketleri ve rasgele hareketleri saptamamızı saglamıştır. Son olarak ise, periyodiklik bilgisi kullanılarak basit bir yönelim tahmini yapılmıştır.
Description
26th IEEE Signal Processing and Communications Applications Conference (2018 : Izmir; Turkey)
Keywords
Time series, Data mining, series classification, Periyodiklik Kestirimi, Veri Madenciliği, Örüntü Tanıma, Veri Madenciliği, Time series, Örüntü Tanıma, series classification, Data mining, Periyodiklik Kestirimi
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Kurtulmaz, E., Aziz, R., Uçar, U., Özyer, T., & Alhajj, R. (2018, May). Periodicity detection in turkish stock market. In 2018 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
WoS Q
N/A
Scopus Q
N/A

OpenCitations Citation Count
N/A
Source
26th IEEE Signal Processing and Communications Applications Conference
Volume
Issue
Start Page
1
End Page
4
PlumX Metrics
Citations
Scopus : 0
Captures
Mendeley Readers : 2
Page Views
583
checked on Dec 15, 2025
Google Scholar™

OpenAlex FWCI
0.0
Sustainable Development Goals
1
NO POVERTY

2
ZERO HUNGER

3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

5
GENDER EQUALITY

6
CLEAN WATER AND SANITATION

7
AFFORDABLE AND CLEAN ENERGY

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES

11
SUSTAINABLE CITIES AND COMMUNITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

13
CLIMATE ACTION

14
LIFE BELOW WATER

15
LIFE ON LAND

16
PEACE, JUSTICE AND STRONG INSTITUTIONS

17
PARTNERSHIPS FOR THE GOALS


