Periodicity Detection in Turkish Stock Market

No Thumbnail Available

Date

2018-07

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

This paper provides a periodicity detection sample of the Turkish Stock Market using data mining concepts and techniques. The extraction of periodic patterns from the time series databases is a captivating area in data mining such that it has impulse to forecast and predict the behavior of time series data in the future. Given data from on a multilevel space from different industries, we find repeating trends and frequent patterns using correlation analysis and fourier spectral evaluation. Using the projection of transformed time-series data of the feature space, we indicate long-term movements, cyclic moves, seasonal variations, and random moves. Finally, we will present a simple trend analysis for time-series forecasting the periodicity. © 2018 IEEE.
Bu makalede, veri madenciligi teknikleri kullanılarak Türk Borsası’nda işlem gören hisse senetlerinin periyodiklik analizi yapılmıştır. Zaman serisi verilerindeki periyodik örüntülerin incelenmesi ilgi gören bir veri madenciligi problemidir, ve gelecek tahmini yapmak için kullanılabilir. Farklı sektörlerden hisse senetlerinin incelendigi bu çalışmada, tekrar eden yönelimler ve sık karşılaşılan örüntüler, ilinti analizi ve Fourier Dönüşümü yöntemleriyle tespit edilmiştir. Zaman serisinin farklı boyutlara dönüştürülmesiyle elde edilen veri, uzun süreli hareketleri, dönemsel hareketleri, periyodik hareketleri ve rasgele hareketleri saptamamızı saglamıştır. Son olarak ise, periyodiklik bilgisi kullanılarak basit bir yönelim tahmini yapılmıştır.

Description

26th IEEE Signal Processing and Communications Applications Conference (2018 : Izmir; Turkey)

Keywords

Time series, Data mining, series classification, Periyodiklik Kestirimi, Veri Madenciliği, Örüntü Tanıma, Veri Madenciliği, Time series, Örüntü Tanıma, series classification, Data mining, Periyodiklik Kestirimi

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Kurtulmaz, E., Aziz, R., Uçar, U., Özyer, T., & Alhajj, R. (2018, May). Periodicity detection in turkish stock market. In 2018 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

26th IEEE Signal Processing and Communications Applications Conference

Volume

Issue

Start Page

1

End Page

4
PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 2

Page Views

583

checked on Dec 15, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

15

LIFE ON LAND
LIFE ON LAND Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo