Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9790
Title: Numerical study of nanofluid heat transfer enhancement with mixing thermal conductivity models [Article]
Authors: Tongkratoke, Amarin
Pramuanjaroenkij, Anchasa
Chaengbamrung, Apichart
Kakac, K.
Keywords: nanofluid
laminar flow
heat transfer enhancement
single-phase model
mixing model
Publisher: Begell House Inc
Abstract: Nanofluids have shown the possibility of enhancing heat transfer performance above its base fluids. This work presents a numerical study that analyzes the nanofluid heat transfer enhancement using different theoretical models; i.e., the effective thermal conductivity and effective viscosity models. The Maxwell, Brownian motion, and Yu and Choi models were considered as the effective thermal conductivity models and these models were used and mixed alternately in the simulation domain, referred to as mixing models. The Al2O3-water nanofluid was chosen in this study and assumed to flow under a laminar, fully developed flow condition through a rectangular pipe such as in a circuit application. The governing equations, written in terms of the primitive variables, were solved through an in-house program using the finite-volume method and the semi-implicit method for pressure linked equations (SIMPLE) algorithm. From the study, the mixing models using Yu and Choi model coupled with Maxwell and Brownian models at the wall boundaries combined with the viscosity model from Maiga provided the numerical results closer to the experimental results from Zeinali Heris and co-workers at volume fractions of 0.01, 0.02, and 0.03%, as well as those of the base fluid. Therefore, by increasing the nanoparticle amounts, volume fraction, effective viscosity, and effective thermal conductivity at the wall region could be increased and enhancements of 0.01, 0.02, and 0.03% volume fractions were 21, 29, and 36% increasing from the base fluid, respectively. This work can strongly support the literature in which the volume fraction, effective viscosity, and effective thermal conductivity can enhance the heat transfer performance in nanofluid flows not only with the single-phase model considered but also with the mixing models examined.
URI: https://doi.org/10.1615/ComputThermalScien.2013006287
https://hdl.handle.net/20.500.11851/9790
ISSN: 1940-2503
1940-2554
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

12
checked on Apr 27, 2024

WEB OF SCIENCETM
Citations

7
checked on Apr 27, 2024

Page view(s)

8
checked on Apr 29, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.