Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9937
Title: Submicron size all-semiconductor vertical cavities with high Q
Authors: Demir, A.
Apaydın, D.
Kurt, H.
Keywords: Data handling
Electromagnetic wave propagation
Finite difference time domain method
Optical communication
Time domain analysis
3d finite difference time domains
Buried structure
High speed laser
Integrated architecture
Low-power consumption
Optical confinement
Oxidation process
Submicron diameters
Semiconductor lasers
Issue Date: 2019
Publisher: OSA - The Optical Society
Abstract: The miniaturization of lasers promises on-chip optical communications and data processing speeds that are beyond the capability of electronics and today's high-speed lasers [1]. Lasers with low-power consumption are one of the most important parts in creating a photonics integrated architecture. This requirement was the motivating force behind the development of small laser and nanolasers. Here, we propose a new method that could be utilized to fabricate such a laser. Oxide-VCSELs require strict control of the oxidation process with significantly reduced reliability for small size, and micropillars have degraded Q with fabrication artifacts for submicron diameter pillars [2]. We propose to use a phase-shifting current-blocking (PSCB) layer serving dual function for a nanocavity device (Fig. 1a) providing both optical- and electrical-confinement via lithographically defined and selectively-biased buried structures. Phase-shifting leads to optical-confinement tuning by layer thickness control and current-blocking provides electrical-confinement. By modifying the dimensions of these layers, the confinement can be tuned by lithographic means [3]. We studied the electromagnetic wave propagation and analyzed the quality factor (Q) of these cavities based on 3D finite difference time domain (FDTD) calculations. © 2019 IEEE
Description: The European Conference on Lasers and Electro-Optics, CLEO_Europe_2019 -- 23 June 2019 through 27 June 2019 -- 142098
URI: https://hdl.handle.net/20.500.11851/9937
ISBN: 9.78E+12
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection

Show full item record

CORE Recommender

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.