Skip navigation
GCRIS
  • Home
  • Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Reports
  • Awards
  • Equipments
  • Explore by
    • Collections
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Sign on to:
    • My GCRIS Repository
    • Receive email
      updates
    • Edit Account details
Network Lab Statistics Bibliometrics Email Alert RSS Feed
 Claim profile

  • Profile
  • Indicators
  • Other

Profile

Picture
Emrah Kılıç.jpg picture
Full Name
Kılıç, Emrah
Main Affiliation
07.03. Department of Mathematics
 
Personal Site
Personal Web Site
 
Email
ekilic@etu.edu.tr
 
Link to YOK Profile
Link to YOK Profile
ORCID
0000-0003-0722-7382
Link to Google Profile
Google Scholar Profile
Scopus Author ID
15757727500
Researcher ID
R-1717-2019
 
Biography
http://ekilic.etu.edu.tr/cv.htm
Country
Turkey
Status
Current Staff
Loading... 5 0 20 0 false
Loading... 6 0 20 0 false

Publications
(Articles)

Author

  • 114 Kılıç, Emrah
  • 25 Prodinger, Helmut
  • 19 Ömür, Neşe
  • 13 Arıkan, Talha
  • 11 Akkuş, İlker
  • 10 Ulutaş, Yücel Türker
  • 7 Koparal, Sibel
  • 6 Taşcı, Dursun
  • 4 Chu, Wenchang
  • 4 da Fonseca, Carlos M.
  • . next >

Subject

  • 10 determinant
  • 10 Fibonacci numbers
  • 10 Fibonomial coefficients
  • 10 LU-decomposition
  • 8 Gaussian q-binomial coefficients
  • 7 Filbert matrix
  • 6 Zeilberger's algorithm
  • 5 Determinant
  • 5 Fibonacci and Lucas numbers
  • 5 Lucas numbers
  • . next >

Date issued

  • 15 2020 - 2023
  • 83 2010 - 2019
  • 20 2003 - 2009

Type

  • 118 Article

Fulltext

  • 89 No Fulltext
  • 29 With Fulltext


Results 1-20 of 118 (Search time: 0.005 seconds).

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
Issue DateTitleAuthor(s)
12011Alternating Sums Of The Powers Of Fibonacci And Lucas NumbersKılıç, Emrah ; Ömür, Neşe; Ulutaş, Yücel Türker
22018An analytical approach: Explicit inverses of periodic tridiagonal matricesHopkins, Tim; Kılıç, Emrah 
32014Asymmetric generalizations of the Filbert matrix and variantsKılıç, Emrah ; Prodinger, Helmut
4Jan-2019A nonlinear generalization of the Filbert matrix and its Lucas analogueKılıç, Emrah ; Arıkan, Talha
52008The Binet formula, sums and representations of generalized Fibonacci p-numbersKılıç, Emrah 
62011Binomial Identities Involving The Generalized Fibonacci Type PolynomialsKılıç, Emrah ; Irmak, Nurettin
72011Binomial Sums Whose Coeffıcients Are Products Of Terms Of Binary SequencesKılıç, Emrah ; Ömür, Neşe; Ulutaş, Yücel Türker
82010Certain binomial sums with recursive coefficientsKılıç, E. ; Ionascu, E. J.
92017A class of non-symmetric band determinants with the Gaussian q-binomialcoefficientsArıkan, Talha; Kılıç, Emrah 
102021A class of symmetric and non-symmetric band matrices via binomial coefficientsMicheal, O.; Kılıç, E. 
112017Closed Form Evaluation Of Melham's Reciprocal SumsKılıç, Emrah ; Prodinger, Helmut
122016Closed form evaluation of restricted sums containing squares of Fibonomial coefficientsKılıç, Emrah ; Prodinger, Helmut
13Jun-2016Closed form evaluation of sums containing squares of Fibonomial coefficientsKılıç, Emrah ; Prodinger, Helmut
142008A computational algorithm for special nth-order pentadiagonal Toeplitz determinantsKılıç, Emrah ; El-Mikkawy, Moawwad
152010Conics Characterizing The Generalized Fibonacci And Lucas Sequences With Indices In Arithmetic ProgressionsKılıç, Emrah ; Ömür, Neşe
162019Cubic sums of q-binomial coefficients and the Fibonomial coefficientsChu, Wenchang; Kılıç, Emrah 
17Sep-2015A curious matrix-sum identity and certain finite sums identitiesKılıç, Emrah ; Akkuş, İlker; Ömür, Neşe; Yücel, T.
182016Decompositions of the Cauchy and Ferrers-Jackson polynomialsIrmak, Nurettin; Kılıç, Emrah 
191-May-2018Double binomial sums and double sums related with certain linear recurrences of various orderKılıç, Emrah ; Arıkan, Talha
202017Evaluation of Hessenberg Determinants via Generating Function ApproachKılıç, Emrah ; Arıkan, Talha
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

 

Claim Researcher Page

Check the encrypted string of this email, put the correct string in the box below and click "Go" to validate the email and claim this profile.

Emails: e k i l * * @ * * * * * * u . t r

Go


Login via ORCID to claim this profile:


Contact via feedback form

If you want contact administrator site clicking the follow button 

Explore by

  • Collections
  • Publications
  • Researchers
  • Patents
  • Organizations
  • Projects
  • Journals


  • Events
  • Equipments
  • Awards
  • Reports
  • Language
  • Rights
  • Category

About

  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
Feedback
Powered by Research Ecosystems