Amyloid-Like Protein Nanofibrous Membranes as a Sensing Layer Infrastructure for the Design of Mass-Sensitive Biosensors
No Thumbnail Available
Date
2017-11
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Advanced Technology
Open Access Color
Green Open Access
Yes
OpenAIRE Downloads
0
OpenAIRE Views
2
Publicly Funded
No
Abstract
Quartz crystal microbalances (QCMs) have been used in the literature for mass sensitive biosensor applications. However, their performance, reliability and stability have been limited by the chemical treatment steps required for the functionalization and activation of the QCM surface, prior to antibody immobilization. Specifically, these steps cause increased film thickness, which diminishes performance by mass overload, and create a harsh environment, which reduces biological activity. In this work, we eliminated this chemical step by introducing a sensing layer modification using electrospun amyloid like-bovine serum albumin (AL-BSA) nanofibers on QCM surfaces. Owing to the self-functionality of AL-BSA nanofibers, these modified QCM surfaces were directly activated by glutaraldehyde (GA). To assess the performance of these modified electrodes, a model protein, lysozyme (Lys), was selected as the biological agent to be immobilized. Frequency measurements were performed in batch (dip-and-dry) and continuous (flow-cell) processes, and binding performances were compared. AL-BSA modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), quartz crystal microbalance (QCM), contact angle (CA) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Protein detection was measured based on the frequency shift before and after the covalent bonding of Lys. Under optimized conditions, the proposed immobilization platforms could bind 335 ng/mL and 250 ng/mL of Lys for batch and continuous processes, respectively. Our results demonstrate the potential usage of these self-functional electrospun AL-BSA infrastructure sensing layers on QCM surfaces. This modification enables the direct immobilization of bioactive agents by eliminating any surface functionalization process for further mass-sensitive biosensor applications.
Description
Keywords
amyloid-like protein, quartz crystal microbalance, electrospinning, lysozyme, bovine serum albumin, protein immobilization, Surface Properties, Nanofibers, Serum Albumin, Bovine, Biosensing Techniques, Enzymes, Immobilized, amyloid-like protein, quartz crystal microbalance, bovine serum albumin, Quartz Crystal Microbalance Techniques, Animals, Cattle, Muramidase, protein immobilization, lysozyme, Electrodes, electrospinning
Turkish CoHE Thesis Center URL
Fields of Science
02 engineering and technology, 01 natural sciences, 0104 chemical sciences, 0210 nano-technology
Citation
Kabay, G., Can, G. K., & Mutlu, M. (2017). Amyloid-like protein nanofibrous membranes as a sensing layer infrastructure for the design of mass-sensitive biosensors. Biosensors and Bioelectronics, 97, 285-291.
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
23
Source
Biosensors & Bioelectronics
Volume
97
Issue
Start Page
285
End Page
291
Collections
PlumX Metrics
Citations
CrossRef : 25
Scopus : 22
PubMed : 2
Patent Family : 1
Captures
Mendeley Readers : 31
Google Scholar™

OpenAlex FWCI
1.52385886
Sustainable Development Goals
1
NO POVERTY

2
ZERO HUNGER

3
GOOD HEALTH AND WELL-BEING

5
GENDER EQUALITY

7
AFFORDABLE AND CLEAN ENERGY

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES

11
SUSTAINABLE CITIES AND COMMUNITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

13
CLIMATE ACTION

14
LIFE BELOW WATER

15
LIFE ON LAND

16
PEACE, JUSTICE AND STRONG INSTITUTIONS

17
PARTNERSHIPS FOR THE GOALS


